
March 11th, 2004 John T. Anderson - VBA Primer Talk

Visual Basic For Applications
(VBA) - Microsoft Excel Specific Primer

• This discussion IS NOT
– going to teach you how to

program
– going to tell you every

feature in VBA
– about discussing the merits

of algorithms
– guaranteed to be politically

correct

• This discussion IS
– concentrated on how to

make applications for END
USERS who ARE NOT
EXPERTS

– predicated on the ‘design
from the top down, but
implement from the bottom
up’ philosophy

– unabashedly biased and
opinionated throughout

March 11th, 2004 John T. Anderson - VBA Primer Talk

So what is this VBA stuff, anyway?
• A real programming language with a few, usually

forgettable, distinctions from standalone Visual Basic
– And one important one: The program is embedded ‘under’ the

spreadsheet and can not be run outside of Excel

• A way to write Windows code without having to think
about jargon B.S. like ‘APIs’ and ‘threads’ and such
– Unfortunately, not fully standardized across Word, Excel,

Powerpoint and Access (especially Access) -but the basics are the
same.

• A way to use Excel as a formatting and layout tool so that
coding effort is expended on getting the job done, not
building the graphical user interface.

March 11th, 2004 John T. Anderson - VBA Primer Talk

Nuts and Bolts - the tools you have
• Fire up Excel. Hit Alt-F11. This is the editor.

List of Projects

Properties List

Important Note!
The projects and sheets and modules are
objects - this is a very important word!

March 11th, 2004 John T. Anderson - VBA Primer Talk

A First Subroutine
• Hit Tools…References. This lists a large number of code libraries you

can ‘add-in’ to do lots of things. The default set will do for many
things, but remember this - it will be important in later sessions.

• OK, let’s create some code and hook it to something.
– Cells in the worksheet, and the worksheet itself, are objects to

manipulate. So let’s write some code to fill cells A2..C7 with
some values.

Option Explicit
Public Sub fill_some_cells()

Worksheets("Sheet1").Range("A2:C7").Value = 6
End Sub

Simply double-click on Sheet1, type it in. Compile. Run from Excel.

March 11th, 2004 John T. Anderson - VBA Primer Talk

Hook it to something
• Head back to Excel. Use Tools..Customize to turn on the Controls

Toolbox.
– Controls are objects (that is, things that have properties you can putz with

and ways to do something, or “methods”)
– Turn on Design Mode (the little drafting triangle)
– Make a button
– Right click, and try ‘view code’

• Hey, you’re back in VBA! And look, you have a Module now.
• Let’s play with the button a bit. It has properties we can play with.
• Note the effect of being in ‘design’ vs. ‘run’ mode.
• Examine the code side of things.

– See all the different things in the right side drop down box? These are the
various actions you can write code to respond to.

March 11th, 2004 John T. Anderson - VBA Primer Talk

The Windows OS - always lurking in back
• Let’s think about all these potential subroutines laying about. Note

we’ve had some code do something, but there’s not been any ‘main
program’. In Windows, it doesn’t work that way.
– Windows wants to be the ‘main’ for all programs at all times
– Any subroutine in any program, no matter how complex, could be entered

at any time
– Interrupts are everywhere! If you click fast enough it’s possible to

execute subroutine ‘b’ in the middle of executing subroutine ‘a’ and ‘a’
will never know about it!

• This can wreak real damage if ‘a’ and ‘b’ use the same variables!
– The wise programmer will insure that critical things have a way to disable

everything else until the critical operation is complete.
– This structure means there are never any ‘wait forever for user to click’

loops

March 11th, 2004 John T. Anderson - VBA Primer Talk

Let the machine do the work.
• OK, that’s pretty trivial. What about a routine that clears

cells A1..C9, then fills A1..A9 with values 1,2,3,..., then
sets the B-row cells to the formula (Ax*5) and the C-
column cells to the formula (Ax*Ax/6), then formats the C
column cells so that they’re red if the C value is greater
than the B?
– Lots of pain in the arse, right? Wrong.
– Go back to Excel. Hit Tools…Macro and let Excel write the junky

stuff for you.
– All the macros are captured as Modules in VBA, and you can

export/import modules to text files for re-use.
– Be forewarned - things are not always the same between versions

of Excel! What works in Excel 97 might not in Excel 2000!

March 11th, 2004 John T. Anderson - VBA Primer Talk

Understanding the Notation
• If you’ve ever programmed in C and used structures this will be very

familiar. The concept and notation is not new; this notation technique
has been around since the mid-70s.

• If you want to play with something in Excel, you simply say

Application(“Excel”).Worksheets(“Sheet1”).Cells(r,c).property = ‘something’
to set a value associated with the lowest level object (the property) to
‘something’

or
something = Application(“Excel”).Worksheets(“Sheet1”).Cells(r,c).property

to retrieve the value of the lowest-level object to variable ‘something’

Note: often the first one or two levels are assumed or implicit using
the WITH statement… can be good, often makes for unreadable code

March 11th, 2004 John T. Anderson - VBA Primer Talk

What about Functions?
• Alright, we’ve built a subroutine - a chunk of code to do

something with data. And, we’ve seen how it can
manipulate the cells in the worksheet. How do you send
information between routines?

• Functions. Try this one.

• Alright, so can you put =jta1(3,4) in your spreadsheet and make it work?
• Yep, there are more tricks. It’s PRIVATE. Make it public and try again.
• No? Try putting it into a Module rather than inside a sheet. Yep, it’s weird.

Option Explicit
Private Function jta1(A As Integer, B As Integer) As Double

Dim temp1 As Double
temp1 = (A * A) + (B * B)
jta1 = Sqr(temp1)

End Function

March 11th, 2004 John T. Anderson - VBA Primer Talk

Other Language Features and Details
• Like any language, VBA has variables and constants.

Variables can be local (within the Sub or Function) or
global.
– Judiciously used, global variables are extremely powerful.
– Named constants are your friend. Would you rather remember to

type MODULE_ADDRESS everywhere or h3910FE9D?

• Variables are defined using the DIM statement.
– As you’d expect, variables can be made into ARRAYS. Use them.

Love them. They make great places to hold data before you copy
it out to the worksheet at the end of the code.

– VBA also supports the definition of Types. Kind of a special case,
but allows you to make your own X.Y.Z structures.

• Functions and Subroutines can have arguments, which are
also DIM’d to insure you match type and size

March 11th, 2004 John T. Anderson - VBA Primer Talk

Other Language Features and Details
• Beware of different variable types

– Long, Short, Integer, Double, String and (eeewwww...)Variant.

• The Variant type means “I don’t know what I’m doing so I
have instructed the computer to pick the worst possible
way to store this information at all times”.

• Converting values between types can be dangerous.
– Biggest problems are trying to treat variables as binary bit things
– Sign extension and/or odd logical results may occur
– In short, it’s not ‘C’ and you shouldn’t assume the moral

equivalents of <<, >>, &, # work exactly like you think they
should.

March 11th, 2004 John T. Anderson - VBA Primer Talk

Do’s and Don’ts

• DO NOT use the cells as
variables (really slow)

• DO NOT get caught with
signed/unsigned variable
issues

• DO NOT fail to make a
clean user interface your
first priority

• DO NOT write routines
other people have done
before! 99.999% of the
time it’s already been
done!

• DO use the WITH
statement (execution
speed)

• DO learn the Object
Browser (the F2 key)

• DO use Option Explicit
• DO use arrays and, where

appropriate, custom
structure types

• DO learn and use
Application Functions

	Visual Basic For Applications(VBA) - Microsoft Excel Specific Primer
	So what is this VBA stuff, anyway?
	Nuts and Bolts - the tools you have
	A First Subroutine
	Hook it to something
	The Windows OS - always lurking in back
	Let the machine do the work.
	Understanding the Notation
	What about Functions?
	Other Language Features and Details
	Other Language Features and Details
	Do’s and Don’ts

